An Occupational Therapist Treats Convergence Insufficiency

An OT treats CI

The process the author uses to treat convergence insufficiency has proven in his clinic to be very efficient, effective and repeatable. Symptoms are generally resolved in 8-10 visits for neuro-typical children and adolescences. This treatment process does not include assessment of primitive reflexes though many of the activities (not by design) may help to integrate these retained reflexes. Treatment sessions are twice a week for one hour. Home programs consist of a brock string performed 3-4 minutes in the morning and afternoon. The patient returns for their annual eye exam one year later and remain symptom free.

The Referral

Most of the referrals are made by Dr. Mark Obenchain OD, a binocular vision/peds specialist. He is a graduate of Indiana University where he completed a residency in binocular vision and pediatrics. He accepts all insurances and Medicaid.  Our patients cover a board spectrum of demographics with approximately 2/3rds being neuro-typical and the remaining 1/3rd having an additional diagnosis such as ADHD, Autism, or other developmental delay. A complete pediatric eye exam with cycloplegic dilation is performed on every child under the age 18 regardless of complaints.

The doctor diagnoses CI when:

The OT Evaluation

The occupational therapy evaluation begins with medical history, medication history and a discussion of academic performance and hobbies.

The following testing is performed:

  • extra ocular movements
  • tracking
  • stereopsis
  • near point of accommodation
  • near point of convergence
  • Developmental Eye Movement Test
  • Beery VMI, Visual Perception and Motor Tests
  • Observations are made during proactive and rotator 3 activities on Sanet Vision Integrator for eye-hand coordination, posture and balance. This performed while patient stands on balance board.

The author does not assess visual perception at this time as the patient has been diagnosed with a near vision problem which could taint the results of this test. An OT evaluation is also an untimed code making the 30-45 minute test not efficient to perform at this time. If visual perceptual problems exist after meeting all CI related goals, then visual perception is assessed and treated.

The Goals

The therapy goals are specific and measurable as well as being tied to function.

  1. LTG–Pt to demonstrate age appropriate visual skills
    1. STG–Pt to demonstrate near point convergence< 6 cm on 5 trials
    2. STG–Pt to fuse 15 BO loose prism to demonstrate improved fusion skills for improved reading and close  tolerance.
    3. STG–Pt to complete 20/30 Rock card with 2.00 flipper in 60-90 seconds to demonstrate age appropriate accommodation skills to improve read and close work tolerance.
    4. Complete Developmental Eye Movement test with age appropriate ratio to demonstrate improve ocular motor accuracy for reading tasks.
    5. STG–Pt to demonstrate age appropriate visual motor integration as tested by Beery VMI
  2. LTG–Pt to be (I) in use brock string to support in clinic treatment.

The Treatment Protocol

The below protocol has been effective and repeatable with most neuro-typical children ages 6 and up. The author has modified activities for children that have difficulties with these tasks which lengthens the amount of treatment sessions but are still effective in meeting the above goals.

  1. On the Sanet Vision Integrator
    1.  Proactive, performed monocular using R/B glasses, while standing on balance board, therapist holds head still while patient alternates touching dots with right then left hands regardless of placement of dots.
    2. Rotator 3, monocular, while on balance board. May touch with any hand, verbal cues to recall alphabet as needed.
  2. Convergence activities
    1. Tranaglyph slides with goal of reaching 30 BO and 12 BI.
    2. Loose prism Jump Vergences with “circle X square” tranaglyph for binocular feedback.
  3. Accommodation
    1. Accommodative Rock task, monocular
  4. Saccades 2 task on Sanet Vision Integrator, while on balance board, monocular with R/B glasses, head held still as needed. Goal is achieve 100% accuracy .5 interval with words.
  5. After improving with these tasks, pt may be progressed to aperture arm, often challenged with 1.00 flipper to maintain focus
  6. Visual motor integration tasks, tracing shapes, copying geoboard forms on paper and/or chalkboard/SVI and other visual motor tasks.
  7. HTS Autoslide performed at end of session

CPT code 97530- therapeutic activities, a timed code, is used for all sessions.

The Outcome

Patient are discharged upon reaching all goals as stated above on two consecutive visits. When this has occurred there have been no re-referrals for CI. There is also a resolution to many other symptoms including

  • resolution of headaches
  • improve reading fluency
  • a resolution to letter reversals in most cases
  • improve handwriting
  • improvement is self-esteem

Learn More

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

About the Author

 

 

 

“Is it a vision problem?”

Does this child have a visually-based problem?

Our children present with a vast array of problems affecting their development and academics. Sensory problems, trauma, autism, behavior, ADHD and the list goes on. Our children get assessed by OTs, and PTs, neurologists, neuropsychologists, and pediatricians. But did they have an eye-exam? A complete eye exam? Only 40% of children have had their eyes examined by an eye doctor. (1) That leaves all of those children potentially walking around with vision problems affecting their academic and developmental development. Meanwhile, we attempt to teach them catch a ball or write the alphabet or button a button.

“Does he need an eye exam?”

YES!!! Every child, regardless of academic performance or other diagnosis, needs a complete eye exam with a binocular vision assessment and cycloplegic dilation, even if the child has never complained about their vision.  Many times, when a child is assessed with the Convergence Insufficiency Symptom Survey, they learn that they are not supposed to see “words moving” on the page or see double when they read. They had symptoms and were not even aware. Most children with ocular motor or near vision problems will read letters on a chart without difficulty. 20/20 means only that each eye has good acuity. It does not tell us how well the eyes are working together or how hard the eyes are working to make a 20/20 acuity. Only a complete eye exam with binocular assessment and cycloplegic dilation can give the whole picture.

“Is this is visually-based problem?”

There are many signs a child is having a visual-based problem.

  • Eye rubbing
  • unexplained headaches
  • poor handwriting
  • poor reading skills that do not improve with tutoring
  • head turning or tilting when reading
  • closing one eye while reading
  • poor visual motor integration that does not improve practice
  • poor balance or motion sensitivity
  • Diagnosed ADHD that does not respond to medication
  • unable to catch a ball
  • letter reversals
  • visual perceptual problems
  • spacing and size problems during handwriting tasks
  • fine motor delays
  • poor depth perception

These problems maybe mis-diagnosed as things like dyslexia or ADHD and even be treated as such without success for many years.

“Who do I send them to, to make sure they a complete eye exam?”

A good place to start is College of Optometrists in Visual Development. These doctor specialize in the assessment and treatment of eye movement disorders and near vision focusing problems that could be affecting academic performance. You can your local COVD doctor with the search tool on the site. One might also look for an optometrist that specializes in pediatrics or binocular vision.

When an appointment is made, be specific about symptoms and ask for a “binocular vision assessment”.

Every child

Every child needs a complete eye exam. Parents may have many reasons to not get this dome, but you cannot teach a child read or write, or catch a ball that cannot see.

Learn More

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

1.Children’s Vision Screening and Intervention. (n.d.). Retrieved from https://nationalcenter.preventblindness.org/childrens-vision-screening-and-intervention

Autism and Vision

Autism and Sight

There has been several recently published articles on autism with some dysfunctions being found at a higher rate than in the neuro-typical population. One study, published in January 2017, found consistently that children with autism reacted slower to changes in light (pupillary light reflex). The pupillary light reflex was slower when lighting changed and, in darkness, the pupil measured smaller than controls.(1)

A second study, published in 2018, found a higher rate of accommodative problems (17.4% for ASD, vs 4.9% control) for children diagnosed with autism. While there was no substantial difference in the rate of refractive error, this higher rate of accommodative problems makes a complete eye exam with assessment of near vision acuity more important.(2)

A review of evidence found several contradictory studies concerning the prevalence of eye movement defects associated with autism, though most agree that saccades inaccuracy as well as difficulties in tracking are common in ASD. These movement problems, coupled with other fine and gross motor deficits found in autism suggests a cerebellar problem.(3)

Autism and Vision

Difficulties with the integration of visual information is found in several studies. All of these studies point to a lack of integration between the parvocellular and magnocellular tract and reduced communication between these tracts.(3)

Studies found differences in VEPs (visually evoked potentials) studies in the activity of the magnocellular tract compared to neuro typical children. The difference was, most notably, a slower recovery period for the magnocellular tract and therefore, decreased integration of the information. Functionally, this may help explain the visual spatial problems frequently seen in ASD diagnosed children. (4, 5)

Lateral gazing’ behavior was also found in some children with ASD as they attempted to use peripheral vision to reduced central visual pathway input. (3) This behavior is also suggestive of magnocellular tract deficits.

Integration Deficits

A common thread through many of these studies is a decreased integration of visual information and motor pathways and the cerebellum. (6) This lack of integration could help explain the ocular motor and saccade problems, as well as increased incidence of gait problems and toe walking (7,8) and visual motor integration problems found in children with ASD. A study also showed that people with ASD do not make good use of visual information to correct posture (9). Addressing this lack of integration could be helpful making functional progress with children on the spectrum.

Summary

A complete binocular vision exam with cycloplegic dilation is very important for every child with autism (and neuro typical children too) given the potential for a higher rate of accommodative and ocular motor problems and fine motor, reading and handwriting problems.

Given the evidence of integration problems, activities for children with ASD should be “top down” type activities that require the integration of movement and vision.

Much of this research is very recent and found some changes from previous research. Many of the studies suggested these differences in results were related to redefining autism with the release of DSM-5 eliminating Aspergers and pervasive developmental disorder and grouping these into the current terminology of autism spectrum disorder. The inclusion of these subjects in studies have helped improve the understanding of vision and autism. Many of the studies also sited small samples as potential limitations.

Learn More

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

(1)Anketell, P. M., Saunders, K. J., Gallagher, S. M., Bailey, C., & Little, J. A. (2018, March). Accommodative Function in Individuals with Autism Spectrum Disorder. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/29424829

(2)DiCriscio, A. S., & Troiani, V. (2017, July 25). Pupil adaptation corresponds to quantitative measures of autism traits in children. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/28743966

(3)Bakroon, A., & Lakshminarayanan, V. (2016, July). Visual function in autism spectrum disorders: a critical review. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/27161596

(4)Jackson, B. L., Blackwood, E. M., Blum, J., Carruthers, S. P., Nemorin, S., Pryor, B. A., . . . Crewther, D. P. (2013, June 18). Magno- and Parvocellular Contrast Responses in Varying Degrees of Autistic Trait. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/23824955

(5)Sutherland, A., & Crewther, D. P. (2010, July). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/20513659

(6)Miller, M., Chukoskie, L., Zinni, M., Townsend, J., & Trauner, D. (2014, August 01). Dyspraxia, motor function and visual-motor integration in autism. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/24742861

(7)Accardo, P. J., & Barrow, W. (2015, April). Toe walking in autism: further observations. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/24563477

(8)Kindregan, D., Gallagher, L., & Gormley, J. (n.d.). Gait deviations in children with autism spectrum disorders: a review. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/25922766

(9)Morris, S. L., Foster, C. J., Parsons, R., Falkmer, M., Falkmer, T., & Rosalie, S. M. (2015, October 29). Differences in the use of vision and proprioception for postural control in autism spectrum disorder. Retrieved March 05, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/26314635

Common Birth to 3 Vision Conditions

Vision Birth to Three

The visual system at birth has a lot of development to do. The early eye exam (6 months to one year) should find anything that may impede this development.

Common Birth to 3 vision problems

Common Birth to 3 Eye problems Pathology Acuity Prognosis Functional Problems Modification
Coloboma failure of the halves of the eye to join completely inutreo, may affect pupil, retina or lid varies depending of retinal damage stable condition glare problems if pupil is affected and retina is functional, reduced bincular depth percpetion sunglasses, motor practice
Optic Nerve Hypoplasia decreased evelopment of the optic nerve, usually assocaied with midbrain/endocrine problems varies from minimal affect to near blindness, possbile field cut, possble nystagmus stable condition Delayed motor development due to reduced visual input.   Refer to TVI at 3 yrs old. vestibular and motor facilitation tasks.
Retinopathy of Pre-Maturity scarring related to excessive blood vessel growth during prolonged O2 exposure in premature infants varies by amount of scarring stable condition depends on level of scarring, may be no delays related to vision based on acuity
Corticol Visual Impairment lack of vision due to visual pathway damage/failure to develop Usually not 100% blind stable condition near blindness, refer to TVI, use contrasting colors, movment and work peripheral to central to investigate amount of vision. Referal to TVI is important for school readiness.
Accommodative Esotropia medial eye turn due to extreme farsightedness 20/20 with glasses in place, eye turn also corrects with glasses improves, but child will remain in glasses throughout life none with early correction, amblypoia without correction glasses should be comfortable and worn at all times.
Infantile Esotropia medial eye turn not related to generally reduced due to amblyopia, may improve with correction varies, tx by surgery vs VT vs Botox reduced motor development per doctors order concerning patching, facillitate motor improvement
Amblyopia reduced acuity due decreased visual pathway development  due to prolonged suppression or lack of stimulation to visual pathway varies, 20/200 or worse to 20/50 depending on patching complaince and glasses wear compliance. may improve with compliance of tx and glasses wear, binocular vision therapy reduced motor dev., head turns, decrease binocular depth perception. Brain with compensate in time motor dev facilitation, exercise amblyopic eye if currently patching, binocular vision activities
Strabismus eye mis-alignment at rest, corrected with surgery vs VT vs Botox varies, generally reduced due to amblyopia varies greatly. Long term, brain adapts to suppression of the turned eye reduced motor dev, self-esteem, self conscious of turned eye, reduced binocular depth perception eye exercises per doctors order, facilitate motor development

Learn more

About the Author

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

Fine motor skills and vision

Does binocular vision affect fine motor ability?

Occupational therapy has been treating fine motor problems since the beginning of the profession. From tying shoes to buttoning to handwriting, when children or adults have difficulty with this, occupational therapy is referred.

Binocular vision?

A small study (1) looked at the fine motor skills of children with reading difficulties and found those with fine motor problems also had binocular vision problems, specifically accommodative problems.  While a small study (19 children), this suggests that vision is playing a role in fine motor coordination.

Another study (2) found that children that were poor readers showed a higher occurrence of binocular vision difficulties and suggested a need for the assessment of these skills in problem readers.

Research also indicates the importance binocular vision and motion perception to development of the motor skills(3) as young a 2 years old.

OT and binocular vision

As therapists, we are seeing children with difficulties that could have a binocular vision component. While a through binocular eye exam should be completed to rule out treatable defects, therapists integrating tracking, saccade and convergence activities could help improve outcomes for their patients. Our background in developmental sequence, kinesiology and assessment of functional ability make therapists the perfect profession to address these deficits. As therapists, we address the motor part of visual motor problems, but basic tracking, eye-hand coordination tasks could help with outcomes by improving the visual aspects of this skill.

The Therapist/OD team

Therapists, both PT and OT, should get the training to feel comfortable integrating these simple tasks into the interventions they already perform. Next, reach out to optometrists in their area. This relationship will be beneficial for both the therapist and optometrist, but mostly, this will help the patient.

 

(1)Niechwiej-Szwedo, E., Alramis, F., & Christian, L. W. (2017, October 27). Association between fine motor skills and binocular visual function in children with reading difficulties. Retrieved November 13, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/29096178

(2)Palomo-Alvarez, C., & Puell, M. C. (2010, June). Binocular function in school children with reading difficulties. Retrieved November 13, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/19960202

(3)Thompson, B., McKinlay, C. J., Chakraborty, A., Anstice, N. S., Jacobs, R. J., Paudel, N., . . . CHYLD, T. E. (2017, September 29). Global motion perception is associated with motor function in 2-year-old children. Retrieved November 13, 2017, from https://www.ncbi.nlm.nih.gov/pubmed/28864240

Learn More

About the Author

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

 

Equipment for Vision Rehabilitation

“What tools do I need to perform basic vision rehab interventions in my clinic?”

The first thing one needs is information. Understanding and Managing Vision Deficits-A Guide for Occupational Therapists would be a wise investment. Dr. Scheiman’s book explains assessing and treating basic binocular vision defects making the subject approachable for therapists. He also teaches a course by the same name that would be a good start.

Vyne Education also offers a course Vision Rehabilitation for Pediatrics-Seeing the Whole the Picture, taught by this author also introduces basic assessment and treating of eye movement disorders.

The Convergence Insufficiency Treatment Trial Manual’s Chapter 8 explains the in-clinic activities used in the CITT and would also be a worth while read.

You will need an optometrist

This may be the hardest thing to find. While the complete binocular vision assessment is the standard of care, frequently this assessment is neglected. Find the optometrist in your community that consistently performs these assessments and you will most likely find a partner. COVD and NORA doctors may be most receptive to working with a physical or occupational therapist that is training in binocular vision disorders.

The optometrist diagnosis is as important as the diagnosis a therapist would get before starting rehab on a shoulder. While we can perform basic testing on a shoulder, some results would indicate further assessment by the orthopedist. Same rules would apply concerning eye movements except that even poor tracking could be caused by a lack of visual acuity requiring glasses (or more accurate glasses).  Always insist that a child have a current eye exam before working on eye movement or even skills like visual motor integration or visual perception. Performance of these tasks requires best corrected visual acuity.

What about Equipment?

The Worth 4 dot   would be a wise first investment. With models starting at about $20, it it also very cost effective and gives great first clues to a eye movement problem.

Marsden Balls offer an easy to use moving target that requires good fixation to read letters. The handy therapist could probably make one on their own.

The Hart Chart is simple way to strengthen accommodation. Do it on a balance board and add in the challenge of balance.

The brock string is a must and its cousin the barrel card can be used to strengthen convergence.  Have the patient make their own brock string becomes a great fine motor activity too.

The Developmental Eye Movement Test is quick to give assessment that gives good data to reading ability and accuracy.

 

Prism and Lenses

The rules governing the use of prism and lenses vary greatly from state to state with the interpretation of the rules varying. Because of this, the author has chosen not to openly recommend these tools. They would generally require being under the supervision of an optometrist or ophthalmologist for there use and purchase.  They also require training to understand the appropriate therapeutic use of these tools.

Be a therapist!

The near-far axis is generally referred to as the Z-axis. When we turn our midline crossing tasks into the Z axis, we are now working the near far visual system.  Check out a previous post here. Be creative and have fun.

Learn More

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

About the Author

 

 

 

Convergence Tasks for Therapists

The Z axis

As therapists, we recognize the importance of mid-line crossing to help with primitive reflexes.  Reaching lateral outside of the base of support challenges balance and posture.

But to exercise convergence, the therapist must turn their favorite activity into the “Z axis”. This axis is the near-far axis, (referred to as the Z axis in vision) and challenges the convergence and accommodation system.  Many of our favorite activities can be modified just by turning them, to help strengthen the near vision system.

Simple convergence strengthening activities

Clothespins are great therapy tool, strengthening pinch for writing and other tasks. Having a child reach to a distance to retrieve the clothespin then hanging the clothespin on a near string can can help with convergence and divergence. The proprioceptive input of the hand hanging the clothespin on the string will cue the eyes to converge to a point.

The swing adds vestibular and proprioception to the convergence and divergence in this video.

In my clinic, I also use a cup with a straw that patients then put toothpicks in. This task can be graded by moving the cup closer to the child’s face.  This is task also made more difficult by not allowing the kiddo to touch the straw, removing the proprioceptive input,  forcing the eyes to guide the hand more accurately.

 

Amazing creative therapists

Cheerios on a Straw

In the task, the patient puts cheerios on a small coffee stirrer. The hand working at the end of the straw does a great job cuing the eyes to converge. Just make sure the straw stays in at mid-line.

Ball in a Tube

In this task, a 4 ft florescent bulb protector ($4 at Home Depot) is cut in half with a ping pong ball put inside. I then placed stickers on top of the tube. The patient has to align the ping pong ball under the the sticker. In standing? Even better. Balancing on a balance board? Even better!!!

As a bonus, the scrap end of the tube become a great “light saber” for popping bubbles to work on tracking and eye hand coordination.

Thanks to therapists that I have met

The weeks I spend traveling are exhausting but the energy of the people I met help me stay motivated. Thank you to all the therapists and teachers and others, that I have met.

 

Learn More

Learn more about this subject in a live course presented by Robert.  Its now available as a webinar too!! Hosted by PESI Education

About the Author